Assignment \# 1

1. For l^{∞} defined as

$$
l^{\infty}=\left\{\left(\xi_{1}, \xi_{2}, \cdots\right): \sup _{k \in \mathbb{N} \geq 1}\left|\xi_{k}\right|<\infty\right\},
$$

define

$$
d: l^{\infty} \times l^{\infty} \longrightarrow \mathbb{R}_{\geq 0},(x, y) \mapsto \sup _{k \in \mathbb{N} \geq 1}\left|\xi_{k}-\eta_{k}\right|,
$$

for all $x=\left(\xi_{1}, \xi_{2}, \cdots\right) \in l^{\infty}$ and $y=\left(\eta_{1}, \eta_{2}, \cdots\right) \in l^{\infty}$.
Prove that d is a metric on l^{∞}.
2. On $C[a, b]$, define

$$
d: C[a, b] \times C[a, b] \longrightarrow \mathbb{R}_{\geq 0},(x, y) \mapsto \int_{a}^{b}|x(t)-y(t)| \mathrm{d} t
$$

for all $x, y \in C[a, b]$.
Prove that this d is a metric on $C[a, b]$.
3. Let X be a set. Assume that d_{1} and d_{2} are two metrics on X. Define

$$
d: X \times X \longrightarrow \mathbb{R}_{\geq 0},(x, y) \mapsto \max \left(d_{1}(x, y), d_{2}(x, y)\right) .
$$

Prove that the above defined d is a metric on X.

